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SUMMARY 
We consider the parallel computation of flows of integral viscoelastic fluids on a heterogeneous network 
of workstations. The proposed methodology is relevant to computational mechanics problems which 
involve a compute-intensive treatment of internal variables (e.g. fibre suspension flow and deformation of 
viscoplastic solids). The main parallel computing issue in such applications is that of load balancing. Both 
static and dynamic allocation of work to processors are considered in the present paper. The proposed 
parallel algorithms have been implemented in an experimental, parallel version of the commercial 
POLYFLOW package developed in Louvain-la-Neuve. The implementation uses the public domain PVM 
software library (Parallel Virtual Machine), which we have extended in order to ease porting to 
heterogeneous networks. We describe parallel efficiency results obtained with three PVM configurations, 
involving up to seven workstations with maximum relative processing speeds of five. The physical problems 
are the stick/slip and abrupt contraction flows of a K.B.K.Z. integral fluid. Using static allocation, parallel 
efficiencies in the range 67%-85% were obtained on a PVM network with four workstations having relative 
speeds of 2:l:l:l. Parallel efficiencies higher than 90% were obtained on the three PVM configurations 
using the dynamic load-balancing schemes. 

KEY WORDS Parallel numerical algorithms Load-balancing schemes Network of workstations Parallel software 
tools PVM Viscoelastic fluids 

1. INTRODUCTION 

The numerical simulation of non-Newtonian fluids has been a topic of active research over the 
last 15 years. 1-4 This field is particularly relevant to material-processing applications involving 
structured fluids such as polymers and fibre  suspension^.^*^ Significant breakthroughs have 
occurred recently towards the development of accurate and stable discretization methods for 
non-Newtonian flow in general and viscoelastic fluids in pa r t i c~ la r . ’~~  The demands in computer 
resources remain, however, a difficult issue. Indeed, realistic three-dimensional simulations of 
industrial viscoelastic flows are currently hardly feasible even with classical vector super- 
computers. In this context parallel computing methodologies have an enormous p~tential.’.~ 

The most realistic constitutive equations for viscoelastic fluids belong to  the class of integral 
The use of such models in complex flow simulations has proven very difficult for 

reasons of numerical accuracy and stability, but also because of compute cost. The numerical 
difficulties have recently been largely overcome, in particular by Crochet and his collabor- 
ators.1’-13 The issue of compute cost is such that simulations with integral fluids are currently 
limited to steady state, two-dimensional flows. In fact, available sequential techniques for integral 
fluids are not at all appropriate to the vector-processing approach of classical supercomputers. 
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On the other hand, parallel techniques can be exploited fruitfully, as demonstrated by Aggarwal 
and Keunings14 in their experiments with a 128-processor INTEL iPSC/860 hypercube. 

The present work is part of an integrated effort within our group towards efficient parallel 
algorithms for simulating rheologically complex flows. Our current research themes include a 
generic frontal finite element solver for distributed memory parallel  computer^,'^-' automatic 
domain decomposition and load-balancing algorithms,' ' and specific parallel techniques for 
memory f l ~ i d s . ' ~ . ' ~  In this paper we explore the use of a heterogeneous network of workstations 
for the parallel computation of integral viscoelastic fluid flow. The participating workstations 
are grouped into a single computing entity by means of the public domain PVM software 
(Parallel Virtual Machine) developed by Beguelin et af." Our developments are based on the 
sequential numerical methods proposed by Crochet and co-workers, 11-' and implemented in 
the commercial POLYFLOW package. l 9  Although results are reported for this particular field 
of applications only, the proposed parallel methodology can be applied to other problems in 
computational mechanics that involve a compute-intensive treatment of internal variables. Three 
examples of such problems are the deformation of viscoplastic solids," the flow of fibre 
suspensions,' and the solution of differential viscoelastic models by the method of characteris- 
tics.2 * 

The paper is organized as follows. We briefly review in Section 2 the field equations governing 
the flow of memory integral fluids. Section 2 also includes an overview of the sequential numerical 
method developed by Crochet and his collaborators.' '-' The proposed parallel algorithms are 
described in Section 3. Section 4 is devoted to PVM implementation issues, while Section 5 
defines the PVM configurations used in this work. The issue of measuring parallel efficiency 
on a heterogeneous PVM configuration is discussed in Section 6. In Section 7 we describe the 
flow problems selected for our experiments. Finally we discuss in Section 9 the results of the 
simulations in terms of the efficiency of the parallel algorithms. 

2. GOVERNING EQUATIONS AND NUMERICAL TECHNIQUE 

We consider steady state, isothermal, creeping 2D flows of incompressible viscoelastic fluids. 
The conservation laws read 

V.(-pI + T) + f = 0, v * v  = 0, 

where p is the pressure, I is the unit tensor, T is the extra stress tensor, v is the velocity vector 
and f is the body force per unit volume of fluid. For integral viscoelastic fluids the extra stress 
T is related to the deformation experienced by the fluid through a memory integral along the 
particle paths." In the present paper we select a K.B.K.Z. integral model of the separable form 
as used in actual polymer-processing simulations by Goublomme et al. l 3  We have 

T = 1; M(s)h(Z,, IJC; ' ( t  - s) ds, 

where the integral is computed along particle paths parametrized by the time lapse s relative to 
current time t. The symbol C;' denotes the Finger strain tensor, namely the inverse of the 
Cauchy-Green strain tensor." The damping function h depends upon the strain invariants Il  
and I , ,  defined as the traces of the Finger and Cauchy-Green strain tensors respectively. Finally, 
the factor M(s)  is a memory function obtained from linear viscoelastic measurements. We have 
selected for our numerical experiments the particular forms for M and h used by Goublomme et 
al. in their recent paper. 
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The governing equations (1) and (2) form a highly non-linear problem in view of the fact that 
pathlines needed to compute the memory integral (2) are apriori unknown. Numerical techniques 
for simulating integral viscoelastic flows are based on a decoupled approach whereby the 
computation of the extra stress is performed separately from that of the flow  kinematic^.'.^ From 
known kinematics, one first calculates the extra stress by means of the constitutive model (2); 
the velocity and pressure fields are then updated by solving the conservation equations (l), using 
the current extra stress as a known pseudobody force term. The procedure is then iterated upon. 

Formally, one iteration of the solution procedure involves the following steps. 

Step I Integrate the constitutive equation (2) to compute the extra stress, using the kinematics 
calculated at the previous iteration. 

Step 2 Update the kinematics (and pressure) by solving the conservation laws (1); the extra 
stress computed in Step 1 is treated as a pseudobody force. 

Step 2 defines a Stokes flow problem, which Crochet et al. ' ' - I3  solve by means of a Galerkin, 
finite element velocity-pressure formulation. This so-called u-v-p problem leads to an algebraic 
set of equations for the nodal unknowns of velocity and pressure, which is solved using a direct 
frontal solver. In order to compute the generalized load vector of the Stokes problem, values 
of the extra stress are needed at all Gauss integration points of the u-u-p finite element mesh. 

Step 1 consists of three subtasks, to be performed for each Gauss point: 

Tracking 

Strain 

Stress 

On the basis of the velocity field computed at the previous iteration, determine 
the upstream trajectory of the integration points. 
Compute the deformation between a discrete number of past configurations and 
the current one; then evaluate the integrand of (2). 
Compute the memory integral (2) numerically. 

Note that these substeps involve Computations that are non-local to the elements of the u-v-p 
mesh. Highly accurate tracking and strain computation techniques have been developed by 
Crochet and his co11aborators.' '-' These authors have implemented the above numerical 
algorithm in the commercial package POLYFLOW developed in Louvain-la-Neuve for the 
simulation of polymer processing flows.Ig This sequential code is used as the starting point for 
our 'parallel' developments with integral viscoelastic models. 

3. PARALLEL ALGORITHMS 

Like any other finite-element-based technique, the numerical method described in the previous 
section has two potentially compute-intensive phases, namely (i) the element-by-element calcula- 
tion of the stiffness matrix and load vector and (ii) the solution of the algebraic equations. For 
complex two-dimensional flows of integral fluids the solution phase is only a very small temporal 
fraction of the total sequential run. Values in the range 0-4%-5% are reported by Aggarwal 
and Keunings for typical applications. One should thus first concentrate on the development 
of efficient parallel strategies for the element-by-element computations. 

This seems at first sight to be an 'embarrassingly parallel' problem. It is indeed one if the work- 
load associated with the computation of the element contributions does not change from one 
element to the other and if the available processors have identical hardware characteristics and 
overall workload. In such a case equidistribution of the elements to the available processors will 
lead to perfect load balancing. With integral viscoelastic fluids and heterogeneous parallel 
systems, however, equidistribution is unlikely to produce satisfactory results and load balancing 
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becomes an important issue.I4 Indeed, the CPU time required to compute the element 
contributions may vary by an order of magnitude from element to element within the same 
non-linear iteration. In addition, the compute load within each element can vary from one 
iteration to the next. Finally, important differences in relative speed may exist between the 
participating processors, and their overall load can vary in time. Dynamic allocation schemes 
thus appear essential. 

In the sequel we present the parallel algorithms in terms of concurrent processes instead of 
concurrent processors. We have indeed in mind that several processes may co-exist on the same 
processor within a local time-sharing environment. 

Following the work of Aggarwal and K e ~ n i n g s , ' ~  the finite element equations are solved 
sequentially by means of a direct frontal technique. On the other hand, the computation of the 
element contributions is distributed to the concurrent compute processes. We consider both 
static and dynamic distribution strategies. 

A simple static allocation strategy amounts to distributing an equal number of elements to 
the processes in charge of the element computations. The distribution is left unchanged during 
the course of the non-linear iterations. This strategy has been used by Aggarwal and Keunings14 
in their preliminary work on the 128-processor INTEL iPSC/860 hypercube. As discussed above, 
it cannot guarantee load balancing. In the dynamic approach the elements are allocated to the 
compute processes on a work-on-demand basis. This involves additional interprocess communica- 
tions relative to the static approach. The gain is of course that load balancing is achieved 
automatically. We shall consider two versions of the dynamic allocation procedure. 

The proposed algorithms are described in pseudocode in Figures 1-3. Three types of 
concurrent processes are involved: a single Host process, a single Frontal process and a number 
N of Node processes. In the static approach the Host single task is to initiate the Frontal and 

ARALLEL ALGORITHM (Static allocation scheme) 

:oncurrent processes : Host, Frontal, (Node[i] , i=1,2, ..., N); 
rocess Host : 

Initiate process [Frontal. (Node[i], i=1,2, ..., N)]; 
rocess Frontal : 

Loop it : start = 1, end = Max-number-of-iterations, step = 1: 
Send kinematics and mesh to all Node processes; 
Loop k : sm = 1, end = Number-of-elements. step = 1: 

Receive contribution of element k from a Node process; 
Assemble contribution into active system; 
Perform frontal elimination; 

Compute solution by backsubstitution; 
If solution has converged then stop iterations; 

Send Smp-signal to all Node pmcesses; 

Repeat until reception of Stop-signal: 
Receive kinematics and mesh; 
Loop j : start = i, end = Number-of-elements, step = N: 

rocess Node[i] : 

Compute contribution of element j; 
Send contribution to Frontal process: 

Figure 1. Pseudocode for the parallel algorithm using static allocation scheme 
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'ARALLEL ALGORITHM (Dynamic allocation scheme #I) 

:oncurrent processes : Host, Frontal. (Node[& i=1,2, ..., N); 
'rocess Host : 

Initiate process [Frontal, (Node[i] , i=1,2, ..., N)]; 
Repeat until rcception of Stop-signal: 

Loop j :' start = 1. end = Number-of-elements, step = 1: 
Wait for q u e s t  from a Node process; 
Send element index j to that Node process; 

Wait for request from a Node process; 
Send No-more-element-signal to that Node process; 

Loop k : start = 1, end = N, step = 1: 

'rocess Frontal : 
Loop it : start = 1, end = Max-number-of-iterations, step = 1: 

Send kinematics and mesh to all Node processes; 
Loop k : start = 1. end = Number-of-elements. step = 1: 

Receive contribution of element k from a Nodeprocess; 
Assemble contribution into active system; 
Perform frontal elimination; 

Compute solution by backsubstitution; 
If solution has converged then stop iterations; 

Send Stop-signal to Host and to all Node processes; 

Repeat until reception of Stop-signal: 
Receive kinematics and mesh; 
Repeat until reception of No-more-element-signal: 

Process Node[il : 

Send request to Host; 
Wait for arrival of My-element; 
Unless My-clement is qua1 
to No-more-elemem-signal: 

Compute contribution of My-element; 
Send contribution to Frontal process; 

Figure 2. Pseudocode for the parallel algorithm using dynamic allocation scheme # 1 

Node processes. In the dynamic approach the Host has the additional task to distribute work 
to the Node processes. The Frontal process is responsible for the assembly of the element 
contributions and the frontal solution of the u - ~ p  finite element equations. It also performs all 
the usual book-keeping tasks of a sequential finite element code (e.g. input of data, output of 
results, management of the iterative process). Finally, the Node processes compute the contribu- 
tions of the elements. In order to ease implementation and in view of the non-local character 
of the computations, all Node processes have complete knowledge of the finite element mesh 
and the current flow kinematics. For free surface problems the mesh changes from one iteration 
to the next.) Data distribution is therefore not an issue here. 

In the first version of the dynamic procedure (Figure 2), the Nodes ask the Host for work and 
then wait for the Host reply before starting to compute. In the second version (Figure 3) the 
Nodes are in a sense always a step ahead of the Host. Once they have received the task of 
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‘ARALLEL ALGORITHM (Dynamic allocation scheme #2) 

:oncurrent processes : Host, Frontal, (Node[i] , i=l,Z, ..., N); 
‘rocess Host : 

Initiate process [Frontal, (Node[i]. i=1,2, ... a)]; 
Repeat until reception of Stop-signal: 

Loop j : Stan = N+1, end = Number-of-elements. step = 1: 
Wait for request from a Nbde process; 
Send element index j to that Node process; 

Wait for request from a Node process; 
Send No-more-element-signal to that Node process; 

Loop k :  start= 1, end= N. step = 1: 

'recess Frontal : 
Loop it : start = 1, end = Max-number-of-iterations, step = 1: 

Send kinematics and mesh to all Node processes; 
Loop k : start = 1, end = Number-of-elements, step = 1: 

Receive contribution of element k from a Node process 
Assemble contribution into active system; 
Perform frontal elimination; 

Compute solution by backsubstitution; 
If solution has converged then stop iterations; 

Send Stop-signal to Host and to all Node processes; 

Repeat until reception of Stop-signal: 
Initialize My-element to i; 
Receive kinematics and mesh; 
Repeat until reception of No-more-element-signal: 

Send request to Host without waiting for the answer; 
Compute Contribution of My-element; 
Send contribution to Frontal process; 
Wait for anival of My-element; 

’rocess Node[i] : 

Figure 3. Pseudocode for parallel algorithm using dynamic allocation scheme # 2  

working for a new element, they immediately ask the Host in advance for the next element; they 
then compute the contribution of the currently available element before the reply arrives from 
the Host. 

The differences between the two dynamic allocation schemes are illustrated in Figures 4 and 
5, which give a typical graphical snapshot of the process activity. These figures were produced 
by means of the software tool library described in the next ~ect ion.’~ In these plots, horizontal 
‘low-level’ lines indicate that a process is doing useful work, while ‘high-level’ lines show that 
the process is idle, waiting for reception of a message from another process. Non-horizontal 
lines connecting two processes indicate a communication event. For example, in Figure 4, Node 
1 sends the computed element contribution to the Frontal process (line A). It then sends a request 
for work to the Host (line B), waits for the answer (line C) and receives from the Host the index 
of the next element to process (line D). Node 1 can now compute the contribution of the new 
element (line E) and send it to the Frontal process (line F) when the computations are over. 

A similar graph is shown in Figure 5 for the second version of the dynamic approach. For 
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Figure 4. Graphical snapshot of process activity (dynamic scheme # 1). Labels A-F mark the following events for Node 
1: A + F, sends computed element contribution to Frontal; B, sends request for next element to Host; C, waits; D, 
receives index of next element from Host; E, computes element contribution; F, sends computed element contribution 
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Figure 4. Graphical snapshot of process activity (dynamic scheme # 1). Labels A-F mark the following events for Node 
1: A + F, sends computed element contribution to Frontal; B, sends request for next element to Host; C, waits; D, 
receives index of next element from Host; E, computes element contribution; F, sends computed element contribution 
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Figure 5 .  Graphical snapshot of process activity (dynamic scheme #2). Labels A-G mark the following events for 
Node #2:  A + E, sends computed element contribution to Frontal; B + F, receives index of new element from Host; 

C + G, sends request for next element to Host but does not wait; D, computes element contribution 

example, Node 2 sends the element contribution to the Frontal process (line A), receives from the 
Host the index of the new element (line B), immediately requests the next element (line C) but 
does not wait for the answer, computes the contribution of the new element (line D), sends it 
to the Frontal process (line E) and receives the index of the next element from the Host (line 
F). With this scheme the wait period for the next element is virtually eliminated. 
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We now describe the issues related to the implementation of the above parallel algorithms 
on a heterogeneous PVM network of workstations. 

4. SOFTWARE TOOLS BASED UPON PVM 

The PVM software is a public domain programming environment which allows for the 
development and execution of parallel distributed applications that consist of many interacting, 
though mostly independent, components. The software operates on a heterogeneous collection 
of processing elements that are interconnected by one or more networks. Machines grouped by 
PVM to form a ‘Parallel Virtual Machine’ may be workstations, vector or even parallel 
computers. The PVM software is being developed by the Oak Ridge National Laboratory and 
is available through netlib. It can easily be installed on most UNIX systems. The main 
documentation may be found in References 18 and 24. We have used Release 2.4.0 of PVM, 
which supports a message-passing model of computation. Future releases will allow for the use 
of physically distributed memory as logically shared memory. 

Basic features currently supported by PVM include initiation of processes, non-blocking send, 
blocking receive, test for reception of message of given type, and synchronization barriers. 
Parallel algorithms implemented with PVM may be written in the standard procedural languages 
FORTRAN or C. The PVM software allows for communication between any processes, and any 
PVM process may start or stop any other PVM process. 

In the PVM environment, any number of processes may be started on any of the participating 
processors. When initiating a process, the user may specify that PVM is allowed to determine 
itself on what processor to start the process, or that PVM must select a machine with a given 
processor architecture, or else that PVM must use a specific computer. Through the use of the 
SUN XDR library, PVM performs data conversion between machines with different data 
formats. It also recognizes processes running on the same processor, thereby avoiding un- 
necessary communication over the network. 

In order to use PVM and before any interprocess communication may take place, one must 
initiate the PVM daemon pvmd on every machine in the PVM network. This is done 
automatically by running pvmd on any one of the participating computers using the name of 
the ‘host’-file as argument. The latter defines all the participating machines. 

We have installed the PVM software on a wide variety of workstations without encountering 
any significant difficult (Table I). Problems arise, however, while porting PVM-based application 
codes to highly heterogeneous configurations. HenriksenZ3 gives a detailed account of such 
difficulties, which are related to the current version of PVM itself and to portability of the 
FORTRAN 77 language used in this work. 

The above issues, combined with the software development work in our group using the 
INTEL iPSC/860 hypercube, led HenriksenZ3 to develop a new set of software tools, called the 
Extended Host/Node Hypercube-Model Library. This library is based upon PVM tools. Its 
programming paradigm is that of a Host/Node structure where a single host process initiates 
a number of identical node processes. In the case where the number of node processes is an 
integral power of two, the library assigns a ‘cube-dimension’ to the PVM configuration, thereby 
allowing the INTEL iPSC code to view the PVM machine as a ‘standard’ hypercube. This basic 
Host/Node Hypercube model is extended to allow any process to initiate additional processes. 
Only one host process is allowed though. 

The library developed by HenriksenZ3 consists of 17 user subroutines and more than 50 
internal routines. In addition to providing the user with all the PVM flexibility, it offers 
additional features which include checking of error conditions, improved identification of 
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Table I. List of workstations on which we have installed PVM, together with the corresponding operating 
systems and FORTRAN compilers 

Workstation Operating system FORTRAN compiler 

DG AViiON 200 
DG AViiON 6020 
DECstation 3100 
DECstation 5000 
H P  9000/720 
H P  9000/730 
IBM RS6000/320 
SG IRIS 
SUN 3 
SUN SPARCl 
SUN SPARCZ 

DG/UX 5.4 
DG/UX 4.31 
ULTRIX V4.2 (Rev.96) 
ULTRIX V4.2 (Rev.96) 
HP-UX A.08.07 
HP-UX A.08.07 
AIX 3.2 
IRIX System V 3.2.1 
SunOS 4.1 
SunOS 4.1 
SunOS 4.1 

Hills FORTRAN-88000 1.8.6 
Hills FORTRAN48000 1.8.4.09 
DEC FORTRAN V3.0-2 
DEC FORTRAN V3.0-2 
HP  FORTRAN 8.07 
HP  FORTRAN 8.07 
AIX FORTRAN 2.2 
FTN 3.3 
Sun FORTRAN 1.3.1 
Sun FORTRAN 1.3.1 
Sun FORTRAN 1.3.1 

message sender, global function calls, timing routines, a debugging mode and a graphical 
communication timer. These features were found very useful in porting codes written for the 
INTEL hypercube to PVM configurations. They are undoubtedly helpful in the ab initio 
development of PVM programmes as well. 

The sequential numerical algorithms described in Section 2 are implemented in the POLY- 
FLOW package developed in Louvain-la-Neuve. ' This commercial application code contains 
about 500 k lines of FORTRAN 77. Fortunately, its modular structure allows for a relatively 
easy implementation of the parallel algorithms described in Section 3. An INTEL iPSC/860 
implementation using static allocation has been developed and exploited on a 128-processor 
configuration by Aggarwal and Keuning~. '~  The PVM parallel version of the POLYFLOW 
code has been developed from its INTEL iPSC counterpart using the tool library developed 
by Henrik~en.'~ 

5. HETEROGENEOUS PVM CONFIGURATIONS 

The experiments reported below involved three heterogeneous PVM configurations which are 
defined in Table 11. Also listed are the PVM processes assigned to the different workstations. 
Configurations A and B involve the same workstations but a different allocation of PVM 
processes. Indicative relative speeds of the various CPUs are quoted for typical sequential 
POLY FLOW runs. 

The participating workstations are linked through Ethernet subnetworks that are part of our 
departmental network (Figure 6). The TCP/IP protocol is used, with a software bandwidth 
limitation of 2 Mbit s-'. All workstations have some local disk space for swapping and moderate 
file storage. A large NFS disk space is attached to the Data General AViiON server. N d e  that 
the DEC 3100 workstations access the NFS main disk and communicate with the SG IRIS 
through two routers, one being itself a participating workstation. 

The workstations listed in Table I1 are heavily used during regular office hours for both 
teaching and research activities; they are almost never completely idle. Clearly the computing 
environment shown in Figure 6 has not at all been designed with parallel distributed computing 
in mind. 
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Table 11. The three PVM configurations used in the experiments 

Workstation Relative speed 

PVM configuration A 

Host 
Frontal 
Node 1 : element contributions 
Node 2: element contributions 
Node 3: element contributions 

P VM configuration B 

Host 
Frontal 
Node 1: element contributions 
Node 2: element contributions 
Node 3: element contributions 
Node 4: element contributions 

PVM configuration C 

Host 
Frontal 
Node 1: element contributions 
Node 2: element contributions 
Node 3: element contributions 
Node 4: element contributions 
Node 5:  element contributions 
Node 6: element contributions 
Node 7: element contributions 

DECstation SO00 
DECstation 5000 
DECstation 3100 A 
DECstation 3100 B 
DECstation 3100 C 

DECstation SO00 
DECstation SO00 
DECstation SO00 
DECstation 3100 A 
DECstation 3100 B 
DECstation 3100 C 

S G  IRIS 
S G  IRIS 
SG IRIS 
DECstation 5000 
DECstation 3100 A 
DECstation 3100 B 
DECstation 3100 C 
DG 200 A 
D G  200 B 

ethernet A 

ROUTER D C5000 7- 
I ethernet B 
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6. PARALLEL EFFICIENCY AND TIMING MEASUREMENTS 

When using a parallel computer with P identical processors, one defines the parallel efficiency 
of the algorithm as the speed-up divided by P .  Speed-up is itself defined as the time for running 
the sequential algorithm divided by the time needed to run the parallel algorithms on the P 
 processor^.^ 

We adopt the following approach to define parallel efficiency when using a heterogeneous 
PVM network of workstations. 

Step I 

Step 2 

Step 3 

Step 4 

Step 5 

For each workstation wi of the PVM network, measure the time needed to run a 
typical ‘small’ flow problem with the sequential algorithm. 
Select a particular workstation w,, and estimate in ‘wj’ units the compute power CP, 
of the PVM configuration: 

1 
CP, .=TjC-- .  iT 

Measure the time TTq needed to run the full problem under investigation 
workstation w, using the sequential algorithm. 
Measure the time TPVM needed to run the full problem under investigation on 
PVM network using the parallel algorithm. 
Compute the parallel efficiency E of the algorithm as 

Tseq 1 
&=i- 

TPVM CP,’ 

(3) 

on 

the 

(4) 

The classical definition of efficiency is recovered when identical processors are used. In this 
case the compute power C P  reduces to the number P of processors. For heterogeneous systems 
the compute power CP, of a PVM configuration is an estimate of the number of ‘wj-equivalent’ 
processors in the configuration. We have measured CPDEC5000 = 2 6  for PVM configurations A 
and B and CPSGIRIs = 3.8 for PVM configuration C (Table 11). 

The definition (4) of efficiency is based on measurement of elapsed times. It is not easy to 
obtain accurate timing results on heterogeneous PVM configurations that are themselves part 
of a wider departmental network. The results reported in the next section were obtained with 
the participating workstations being entirely devoted to the PVM experiments. Of course, this 
statement cannot be absolutely correct. Indeed, the UNIX operating system is always managing 
background processes. In addition, the PVM configurations are not isolated systems; collisions 
can arise with other workstations that use NFS. In order to illustrate this point, we show in 
Figure 7 the measured transfer rate of 20 consecutive write-buffer calls (buffer size is 800 kB) 
from one of the DEC 3100 workstations to the DG 6020 disk. We see that the transfer rate 
varies approximately by a factor of three over an interval of a few minutes. 

Another difficulty is related to the estimation of the compute power CP, of the PVM 
configurations. As mentioned above, this measure is based upon ‘small’ flow problems that are 
run in sequential mode on all the participating workstations. It would be more accurate to use 
the timings for the actual (large-size) problem under investigation. Such measurements are not 
feasible, however, with the less powerful CPUs of the PVM network. 

On the basis of many careful experiments, we estimate that the margin of uncertainty in the 
reported efficiency data is 5%. One should not expect anything near to this satisfactory figure 
if the PVM code were run in competition with other users’ processes. 
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Figure 7. Transmission rates for 20 consecutive writes of an 800 kB buffer from a DEC 3100 to the NFS disk on the 

DG 6020 (Figure 6) 

7. STICK/SLIP AND CONTRACTION FLOW PROBLEMS 

The results discussed in Section 8 have been obtained for two complex flows of relevance to the 
community of computational rheologists, namely the stick/slip and contraction flow problems.’ 
Figure 8 shows the computational domains and boundary conditions, together with representa- 
tive finite element discretizations for the u-u-p problem. 

Several meshes with up to 512 elements were used. Although this is not an impressive figure 
for a standard Stokes flow problem, the fact that the memory integral (2) must be computed at 
each Gauss point during the iterative procedure makes such computations very lengthy. Indeed, 
this level of mesh refinement is the highest that Goublomme et al. ’’ could afford in their recent 
sequential calculations with the K.B.K.Z. model. For example, a single non-linear iteration with 
a 450-element contraction mesh consumes 20 min of CPU time on the SG IRIS. Typically 
between 30 and 100 non-linear iterations are needed to achieve convergence in such flow 
problems. 

8. PARALLEL EFFICIENCY RESULTS 

Our purpose is to discuss the parallel efficiency data obtained on the three PVM configurations 
of Table 11. Information on the physical and numerical aspects of the simulations can be found 
in References 11-13. 

Figure 9 shows the parallel efficiency obtained for the stick/slip problem using PVM 
configurations A and B. Results are shown for four finite element meshes. We consider here the 
results obtained with the static allocation scheme and the first version of the dynamic scheme 
(Figures 1 and 2). One should note that these efficiency results have been obtained for the first 
few iterations of the non-linear procedure, starting from the Newtonian flow field. During these 
early iterations the flow kinematics do not change much from one iteration to the next. This of 
course is the best possible situation for the static allocation scheme. Nevertheless, inspection of 
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Figure 8. Partial view of typical finite element discretizations. Boundary conditions for stick/slip flow are: fully developed 
flow at inlet (a) and outlet (c), plane of symmetry (b), slip surface (d) and no-slip wall (e). Boundary conditions for 

contraction flow are: fully developed flow at inlet (a) and outlet (c), no-slip wall (b) and axis of symmetry (d) 
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Figure 9. Parallel efficiency as a function of problem size (stick/slip problem) 

Figure 9 reveals the superiority of the dynamic allocation approach, especially when the size of 
the problem (i.e. the number of elements) increases. One also observes that efficiency levels in 
the range 80%-95% are obtained with PVM configuration B and the dynamic approach. 

With PVM configuration A, the efficiency levels off at 59%. The reason for this is easy to 
grasp. PVM configuration A makes bad use of the available compute resources, since only two 
very ‘light-weight’ processes (Host and Frontal) run on the DEC 5000, which is the most powerful 
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Figure 10. Parallel efficiency as a function of problem size (contraction problem) 

CPU of the configuration (Table 11). PVM configuration B, on the other hand, allocates also 
one of the ‘heavy-weight’ Node processes to the DEC 5000. In fact, the maximum available 
efficiency that can be reached with PVM configuration A is 60%. This value is computed by 
disregarding the contribution of the DEC5000 in equation (3). 

Figure 10 shows similar results for the contraction flow problem. Here three meshes have been 
used. Again very high efficiency levels are obtained with PVM configuration B and the dynamic 
allocation procedure; the static scheme, though less efficient, behaves in a satisfactory manner. 
With PVM configuration A the dynamic scheme is, with all three meshes, very close to the 
maximum achievable efficiency (60%). The static scheme is really at its best in this case, since 
the Node processes run on identical CPUs and not much change in kinematics occurs during 
the first non-linear iterations. 

Let us now compare the results obtained with PVM configurations B and C. In the sequel 
we shall only consider the two versions of the dynamic allocation approach. Figure 11 shows 
the efficiency results obtained for the stick/slip problem and dynamic scheme # l .  Although 
frequent interprocess communications occur with the dynamic approach very high efficiency 
levels are reached with both PVM configurations when the number of elements increases. The 
intricate load-balancing issue described in Section 3 is thus treated automatically in a rather 
satisfactory way. When inspecting Figure 11, one should not consider with too much scrutiny 
the crossing of the two curves obtained with PVM configurations B and C .  Indeed, as discussed 
previously, the level of uncertainty in the reported efficiency values is of the order of 5%.  In 
view of the excellent efficiency results obtained on the stick/slip flow problem with PVM 
configurations B and C and dynamic scheme #1, we have not deemed it necessary to test 
dynamic scheme # 2  in this context. 

Let us now consider the contraction flow problem (Figure 12). With PVM configuration B 
and dynamic scheme # 1, the efficiency is found to increase monotonically when the problem 
size increases, with values higher than 90%. Here again one does not expect (nor does one need) 
a major improvement by using dynamic scheme #2. The situation is somewhat different with 
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Figure 12. Parallel efficiency as a function of problem size (contraction problem): dynamic allocation schemes # 1 and # 2 

PVM configuration C. Using dynamic scheme # 1, we find that efficiency levels off and eventually 
decreases with increasing problem size. We attribute this behaviour mainly to the idle cycles 
wasted by the Node processes when waiting for work (see Figure 4). Dynamic scheme # 2  
virtually eliminates those idle periods (see Figure 5). As a result, efficiency remains monotonically 
increasing and does reach very high values when the number of elements increases. 
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9. CONCLUSIONS 

This work demonstrates that large-scale computational mechanics simulations can be conducted 
efficiently on a ‘Parallel Virtual Machine’ that groups a number of interconnected workstations. 
Although the present paper focuses on a particular application, namely the simulation of memory 
fluids described by integral models, the proposed parallel methodology is relevant to other 
problems that involve a computer-intensive treatment of interval variables. 

We have found the public domain PVM software to be a powerful tool that allows the use 
of a highly heterogeneous network of workstations as a single computing resource. The PVM 
software is stable, flexible and easy to use. The minor flaws identified during the course of this 
work have been overcome in the software library developed by Henrik~en.’~ Extensions to the 
PVM package are straightforward to add, resulting in environments that can compete with 
commercial software products. 

Although the idea of grouping available workstations in a ‘Parallel Virtual Machine’ is very 
attractive, one should not underestimate the many potential sources for loss of parallel efficiency. 
In particular, these PVM configurations may not always be viewed as isolated systems and the 
workload of the participating processors may change during the course of a PVM run. Clearly, 
dynamic allocation procedures of workload to processors, such as those developed in the present 
paper, are essential for the efficient use of heterogeneous PVM configurations made of 
interconnected workstations. 
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